A Hybrid Mining Approach to Facilitate Health Insurance Decision: Case Study of Non-Traditional Data Mining Applications in Taiwan NHI Databases

نویسندگان

  • Joseph Tan
  • Ofir Turel
  • Michael Dohan
چکیده

This study examines time-sensitive applications of data mining methods to facilitate claims review processing and provide policy information for insurance decision-making vis-à-vis the Taiwan National Health Insurance databases. In order to obtain the best payment management, a hybrid mining approach, which has been grounded on the extant knowledge of data mining projects and health insurance domain knowledge, is proposed. Through the integration of data warehousing, online analytical processing, data mining techniques and traditional data analysis in the healthcare field, an easy-to-use decision support platform, which will facilitate the health insurance decision-making process, is built. Drawing from lessons learned in case study, results showed that not only is hybrid mining approach a reliable, powerful, and user-friendly platform for diversified payment decision support, but that it also has great relevance for the practice and acceptance of evidence-based medicine. Researchers should develop hybrid mining approach combined with their own application systems in the future.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Traditional Data Mining Applications in Taiwan National Health Insurance (NHI) Databases: A Hybrid Mining (HM) Case for the Framing of NHI Decisions

Thisstudyexaminestime-sensitiveapplicationsofdataminingmethodstofacilitateclaimsreview processing and provide policy information for insurance decision-making vis-à-vis theTaiwan NationalHealthInsurance(NHI)databases.Inordertoobtainthebestpaymentmanagement,ahybrid mining(HM)approach,whichhasbeengroundedontheextantknowledgeofdataminingprojects...

متن کامل

Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study

This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...

متن کامل

An Integrated DEA and Data Mining Approach for Performance Assessment

This paper presents a data envelopment analysis (DEA) model combined with Bootstrapping to assess performance of one of the Data mining Algorithms. We applied a two-step process for performance productivity analysis of insurance branches within a case study. First, using a DEA model, the study analyzes the productivity of eighteen decision-making units (DMUs). Using a Malmquist index, DEA deter...

متن کامل

Application of Rough Set Theory in Data Mining for Decision Support Systems (DSSs)

Decision support systems (DSSs) are prevalent information systems for decision making in many competitive business environments. In a DSS, decision making process is intimately related to some factors which determine the quality of information systems and their related products. Traditional approaches to data analysis usually cannot be implemented in sophisticated Companies, where managers ne...

متن کامل

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017